Weak Complicial Sets A Simplicial Weak ω-Category Theory Part I: Basic Homotopy Theory
نویسندگان
چکیده
This paper develops the foundations of a simplicial theory of weak ω-categories, which builds upon the insights originally expounded by Ross Street in his 1987 paper on oriented simplices. The resulting theory of weak complicial sets provides a common generalisation of the theories of (strict) ω-categories, Kan complexes and Joyal’s quasi-categories. We generalise a number of results due to the current author with regard to complicial sets and strict ω-categories to provide an armoury of well behaved technical devices, such as joins and Gray tensor products, which will be used to study these the weak ω-category theory of these structures in a series of companion papers. In particular, we establish their basic homotopy theory by constructing a Quillen model structure on the category of stratified simplicial sets whose fibrant objects are the weak complicial sets. As a simple corollary of this work we provide an independent construction of Joyal’s model structure on simplicial sets for which the fibrant objects are the quasi-categories.
منابع مشابه
Weak Complicial Sets A Simplicial Weak ω-Category Theory Part II: Nerves of Complicial Gray-Categories
This paper continues the development of a simplicial theory of weak ω-categories, by studying categories which are enriched in weak complicial sets. These complicial Gray-categories generalise both the Kan complex enriched categories of homotopy theory and the 3-categorical Gray-categories of weak 3-category theory. We derive a simplicial nerve construction, which is closely related to Cordier ...
متن کاملWeak complicial sets and internal quasi-categories
It is well known that we may represent (strict) ω-categories as simplicial sets, via Street’s ω-categorical nerve construction [2]. What may be less well known, is that we may extend Street’s nerve functor to one which has been shown to be fully-faithful (Verity [3]). This is achieved by augmenting each simplicial set in the codomain of this functor with a specified subset of thin simplices and...
متن کاملWeak omega-categories
This paper proposes to define a weak higher-dimensional category to be a simplicial set satisfying properties. The definition is a refinement of that suggested at the end of [St3] which required extra structure on the simplicial set. The paper [St3] constructed the simplicial nerve of a (strict) ω-category. The principal aim of the paper was to prove that the construction was right adjoint to t...
متن کاملHomotopy Theories for Diagrams of Spaces
We show that the category of diagrams of topological spaces (or simplicial sets) admits many interesting model category structures in the sense of Quillen [8]. The strongest one renders any diagram of simplicial complexes and simplicial maps between them both fibrant and cofibrant. Namely, homotopy invertible maps between such are the weak equivalences and they are detectable by the "spaces of ...
متن کاملSimplicial approximation
The purpose of this paper is to display a different approach to the construction of the homotopy theory of simplicial sets and the corresponding equivalence with the homotopy theory of topological spaces. This approach is an alternative to existing published proofs [4],[11], but is of a more classical flavour in that it depends heavily on simplicial approximation techniques. The verification of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008